本文设计到六道股票问题的求解方法
简单来说,这六道股票问题的本质都是一样的,但是复杂度有所不同,解决方法都是动态规划!!!
首先看第一道题
买卖股票的最佳时机
难度 简单
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票一次),设计一个算法来计算你所能获取的最大利润。
注意:你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例 2:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
暴力法
理解起来很简单,就是暴力搜索所有的买卖可能,自然复杂度也高达O(n^2)。
1 | # 此方法会超时 |
一次遍历
在遍历的过程中,我们记录minprice
即历史最低价,记录maxprofit
即最大利润。每一天我们都用这样的方式来更新历史最低价:更新最大利润:将最大利润与price - minprice
比较,记录更大的那个。最后我们输出最大利润便可。
1 | class Solution: |
买卖股票的最佳时机 II
难度 简单
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 3 * 10 ^ 4
0 <= prices[i] <= 10 ^ 4
一次遍历
可以多次购买,即每天可能较前一天所获得的利润
相加。
1 | class Solution: |
123. 买卖股票的最佳时机 III
难度 困难
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
这是一道困难等级的题,相比前两题有很大的难度提升。
暴力法(不通过)
很容易想到求出收益第一高和第二高的两次买卖,然后加起来。对于普通的情况是可以解决的,但是对于下边的情况
1 5 2 8 3 10
第一天买第二天卖,第三天买第四天卖,第五天买第六天卖,三次收益分别是 4,6,7,最高的两次就是 6 + 7 = 13 了,但是我们第二天其实可以不卖出,第四天再卖出,那么收益是 8 - 1 = 7,再加上第五天买入第六天卖出的收益就是 7 + 7 = 14了。
二维动态规划
动态规划最关键是动态规划数组和状态转移方程。
动态规划数组
按照最简单的动态规划思想:用 dp[i]
表示前i
天的最高收益,那么 dp[i]
怎么根据 dp[i-n]
求出来呢?
这里的dp[i]
和当前的交易次数相关,对于这样有两个与结果相关的变量的动态规划问题,一般会使用二维动态规划数组。
用 dp[i][k]
表示前i
天最多交易k
次的最高收益,那么 dp[i][k]
怎么通过之前的解求出来呢?
dp[i][k] = Max(dp[i-1][k],prices[i] - prices[j] + dp[j][k-1])
,j
取 0 - i
1 | public int maxProfit(int[] prices) { |
买卖股票的最佳时机 IV
难度困难
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [2,4,1], k = 2
输出: 2
解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入: [3,2,6,5,0,3], k = 2
输出: 7
解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
二维动态规划
有了上一题的基础,这道题的解答比较简单。